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A new result is derived for the mass flow rate per unit volume through a scalar
iso-surface – called here the ‘iso-surface mass flow density’. The relationship of the
surface mass flow density to the local entrainment rate per unit volume in scalar
mixing and to the local reaction rate in turbulent premixed combustion is considered.
In inhomogeneous flows, integration of the surface mass flow density across the layer
in the direction of the mean scalar inhomogeneity yields the mean entrainment velocity
in scalar mixing and the turbulent burning velocity in premixed combustion. For non-
premixed turbulent reacting flow, this new result is shown to be consistent with the
classical result of Bilger (Combust. Sci. Technol. vol. 13, 1976, p. 155) for fast one-step
irreversible chemical reactions. Direct numerical simulation data for conserved scalar
mixing, isothermal reaction front propagation and turbulent premixed flames are
analysed. It is found that the entrainment velocity in the conserved scalar mixing case
is sensitive to a threshold value. This suggests that the entrainment velocity is not a
well-defined concept in temporally developing mixing layers and that scaling laws for
the viscous superlayer warrant further investigation. In the isothermal reaction fronts
problem, the characteristics of iso-surface propagation in a low Damköhler number
regime are investigated. In premixed flames, the effects of non-stationarity on the
turbulent burning velocity are addressed. The difference from the existing methods
for determining turbulent burning velocity, and the implications of the present results
for flames with multi-dimensional complex geometry are discussed. It is also shown
that the surface mass flow density is related to the turbulent scalar flux in statistically
stationary one-dimensional premixed flames. Variations of the local propagation
characteristics due to departure from an unstretched laminar flame structure are
shown to decrease the tendency to counter-gradient transport in turbulent premixed
flames.

1. Introduction
The study of the behaviour of iso-scalar surfaces is crucial in understanding

turbulent mixing and combustion. Iso-surfaces in turbulent flows are complicated
owing to stretching and folding by random velocity fluctuations with a broadband
spectrum of time and length scales (Candel & Poinsot 1990; Trouve & Poinsot 1994;
Vervisch et al. 1995). Increased surface area and scalar gradients due to the turbulent
motions result in the enhanced mixing of the scalar. Overall reaction rates in turbulent
non-premixed combustion increase with the turbulent mixing rate, when there is little
local extinction. The propagation of iso-surfaces is of critical importance in turbulent
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premixed combustion, where the flame fronts can be defined as iso-surfaces of a
reactive scalar.

In this work, existing results for the velocity of the fluid relative to a scalar
isosurface (Gibson 1968; Pope 1988) and of the fine-grained density of the surface
area of the iso-surface (Pope 1990; Vervisch et al. 1995) are combined to give a new
result for the mass flow rate per unit volume through the iso-surface, called here the
‘surface mass flow density’. The relationship of the surface mass flow density to the
local entrainment rate per unit volume in scalar mixing and to the local reaction rate
in turbulent premixed combustion is considered. In inhomogeneous flows, integration
of the surface mass flow density across the layer in the direction of the mean scalar
inhomogeneity yields the mean entrainment velocity in scalar mixing and the turbulent
burning velocity in premixed combustion.

In non-premixed turbulent combustion with a fast one-step irreversible reaction,
the reaction rate per unit volume is given by Bilger (1976). The iso-surface mass flow
density derived here is shown to be consistent with this result.

The concept of entrainment in turbulent mixing is well established (Pope 2000).
Often the entrainment is expressed in terms of the entrainment of a scalar quantity.
Questions remain, however, as to the sensitivity of the result to the threshold value
chosen for the scalar. This is similar to the question of the effect of the threshold
on the evaluation of scalar intermittency (Bilger, Antonia & Srinivasan 1976). The
results derived here for the surface mass flow density and the entrainment velocity
allow a more satisfactory framework for addressing these questions. Direct numerical
simulations of a temporally developing scalar mixing layer have been carried out to
explore this issue.

The concept of turbulent burning velocity in premixed combustion is well
established (Peters 2000), but appears to be only well-defined in the ideal situation
of a flame brush that is statistically one-dimensional and stationary in the mean
(Cheng & Shepherd 1991; Bilger et al. 2005). Experimental methods of determining
turbulent burning velocity (Peters 2000) include spherical propagation in a fan-
stirred combustion vessel, flames stabilized on a Bunsen burner, turbulent counterflow
premixed flames and flames stabilized in a weakly swirling co-flow. Results depend on
the choice of method to define the location of the flame front and can arise from the
time-developing nature of the flame brush propagation and/or the divergent nature of
the flow. The results derived here for the surface mass flow density and the turbulent
burning velocity allow a more satisfactory framework for addressing such questions.
Direct numerical simulations of developing planar isothermal reaction fronts and
turbulent premixed flames have been carried out to explore the issues associated with
non-stationarity.

Swaminathan, Bilger & Ruetch (1997) have shown that the turbulent scalar flux
in turbulent premixed flames is related to the structure of the instantaneous flame
front. The results derived here for the surface mass flow density are used to further
elucidate the transition from countergradient to gradient behaviour of the turbulent
scalar flux.

The paper is organized as follows. In § 2, the mathematical formulation of the
surface mass density is presented together with results for the total mass flux across
inhomogeneous layers, entrainment velocity and turbulent burning velocity. It is
verified that this new result is consistent with the classical result for fast one-step
irreversible chemical reactions in non-premixed turbulent reacting flow. In § 3, the
methods employed in the direct numerical simulations are outlined together with
the parameters used for the cases studied. Results arising from the direct numerical
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Figure 1. Local scalar fields φ and ψ at time t near the point P in a particular member of
the complete ensemble of turbulent flows and the associated vectors of interest at point P. The
fluid velocity at P is U; Uψ is the velocity of species ψ; V φ is the velocity of the iso-surface
with a fixed value of φ, here coincidentally equal to ϕ; n is the unit normal to that iso-surface
and Σϕ its ’fine-grained’ surface density, the double arrowhead denoting its delta-function-
like character. The velocity of scalar ψ relative to the iso-surface is uψφ .

simulations are presented and discussed in § 4. Further discussion on turbulent burning
velocity and implications for multi-dimensional flames is presented in § 5, and the
paper ends with a summary of the main conclusions.

2. Theory
2.1. Iso-surface mass flow density

Our task here is to derive general results for the flow of a scalar ψ through the
iso-surface of another scalar φ upon which φ has the value ϕ. Results for the special
cases when ψ and φ are the same and when ψ = 1 are also to be obtained.

Figure 1 shows schematically the local scalar fields near a point P at time t in a
particular member of the total ensemble of this turbulent mixing flow. Also shown
are the vectors of interest in this analysis. The scalar φ is denoted by solid curves
with the line thickness denoting the magnitude of φ, while the scalar ψ is denoted by
dashed curves with magnitude also denoted by line thickness. The depiction coincides
with the condition that φ = ϕ at P.

The rate of displacement V φ of a constant property surface with scalar φ =ϕ is
given by

V φ =
−n(∂φ/∂t)

|∇φ| + V t
φ, (2.1)

where n = ∇φ/|∇φ| is the unit vector normal to the constant property surface, positive
in the direction of increasing φ (de Goey & Boonkkamp 1999), and V t

φ is the velocity
component tangential to the constant property surface. For the other scalar, ψ , its
velocity in the laboratory frame is, assuming Fickian diffusion,

Uψ = U − Dψ

ψ
∇ψ, (2.2)

so that the velocity of the scalar ψ relative to the iso-surface is given by (2.2)–(2.1)

uψφ = Uψ − V φ = U − Dψ

ψ
∇ψ − −n(∂φ/∂t)

|∇φ| − V t
φ =

n(Dφ/Dt)

|∇φ| − Dψ

ψ
∇ψ. (2.3)
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The mass flux of the scalar ψ relative to the iso-surface is thus

ρψuψφ = ρψ
n(Dφ/Dt)

|∇φ| − ρDψ∇ψ. (2.4)

The fine-grained surface density of the surface with φ = ϕ (Pope 1990; Vervisch
et al. 1995) may be written in vector form as

Σϕ = ∇φδ(φ − ϕ), (2.5)

where δ(φ − ϕ) is the Dirac delta function. Σϕ is the fine-grained surface to volume
ratio in vectorial form of the φ = ϕ surface with the orientation of the vector area in
the same direction as for n.

The fine-grained mass flow per unit volume of the scalar ψ , ṁ
′′′

ψϕ is given by
multiplying (2.4) by (2.5) to yield

ṁ
′′′

ψϕ =

(
ρψ

Dφ

Dt
− ρDψ∇ψ · ∇φ

)
δ(φ − ϕ). (2.6)

Ensemble averaging of (2.6) gives Rψϕ , the average mass flow rate of the scalar ψ

per unit volume through the iso-surface, φ =ϕ, positive in the direction of increasing
φ:

Rψϕ(x, t) =

[〈
ρψ

Dφ

Dt
|φ(x, t) =ϕ

〉
− 〈ρDψ∇ψ · ∇φ|φ(x, t) =ϕ〉

]
P (ϕ; x, t), (2.7)

where P (ϕ; x, t) is the probability density function (PDF) of φ at the point (x, t) for
the ensemble. The terms involving angle brackets with a vertical bar denote ensemble
averaging for the members of the ensemble in which the condition given to the right
of the vertical bar is valid. Equation (2.7) is the general result that has been sought
here. Rψϕ is called the ‘iso-surface mass flow density’ of the scalar ψ through the
iso-surfaces of φ with φ = ϕ.

In the special case where ψ and φ are the same, we have

Rφϕ(x, t) =

[
ϕ

〈
ρ

Dφ

Dt
|φ(x, t) =ϕ

〉
− 〈ρDφ∇φ · ∇φ|φ(x, t) =ϕ〉

]
P (ϕ; x, t). (2.8)

By setting ψ = 1 in (2.7), it can be seen that the average total mass flow rate of the
fluid per unit volume through the iso-surface with φ =ϕ is given by

Rϕ(x, t) =

〈
ρ

Dφ

Dt
|φ(x, t) =ϕ

〉
P (ϕ; x, t). (2.9)

Rϕ is called the ‘iso-surface mass flow density’. Equations (2.7)–(2.9) are new results
that have important implications for turbulent mixing and combustion.

2.2. Total mass flux across inhomogeneous layers

In inhomogeneous flows, there will be strong spatial variations of the iso-surface
mass flow density, Rψϕ , which is, of course, a point-wise statistic. In such flows,
interest is usually focused on the total mass flow across the iso-surface when this is
integrated across the flow. The concepts of entrainment in free flows and of turbulent
flame speed in turbulent premixed combustion are of this nature. In this subsection
we formally define such crossflow total fluxes and relate them to the fundamental
processes in the flow.

Figure 2 shows schematically the situation for some typical problems of interest.
Here, the flow and mixing is statistically stationary and two-dimensional in nature,
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Figure 2. Schematic of a statistically stationary inhomogeneous turbulent flow such as a
planar or round jet or a premixed flame on a slot burner or a Bunsen burner. Dashed curves
denote iso-surfaces with the same value of the mean scalar φ̃. The full curve denotes an
instantaneous iso-surface with φ = ϕ. The bold dashed curve indicates the integration path
used to obtain entrainment rate or turbulent flame speed.

either planar or axisymmetric. If it is jet mixing, the question of interest is the
entrainment rate into the jet as a function of the threshold value, ϕ, of the scalar φ that
is chosen. Integration across the layer along the path indicated is required. In practice,
integration along the radius at a constant value of the axial coordinate may suffice. If
the turbulent premixed flame burning velocity is of interest, integration of Rϕ across
the layer is required and it is likely to be dependent to a significant extent on the value
chosen and perhaps also on the integration path. For axisymmetric cases, weighting of
the integration by the radius is required. The fundamental analysis presented here has
the potential of resolving these questions of classical importance in turbulent mixing
and premixed flame propagation. The situation will be somewhat more complex in
three-dimensional stationary flows and in flows that are not statistically stationary:
the conceptual framework will not be fundamentally different, however.

The overall flux of the scalar ψ through the iso-φ surface can be obtained by integ-
ration of Rψϕ across an inhomogeneous layer. Consider a statistically one-dimensional
planar layer. The integration of the surface mass flow density across the layer yields∫ ∞

−∞
Rψϕ dx1 =

〈∫ ∞

−∞
ρψuψφ · n|∇φ|δ(φ − ϕ) dx1

〉
=

〈∑
i

[
ρϕψuψϕ · nϕ

|nϕ · e1|

]
i

〉
, (2.10)

where e1 is the unit vector in the integration direction. The commutativity of
integration and ensemble averaging is used in the first part of (2.10), while the second
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part recognizes that for a single member of the ensemble, the integration path will only
intersect the iso-surface a finite number of times and so can be expressed as a summa-
tion over these intersections. The term, 1/|nϕ · e1|, is the ratio of the infinitesimal area of
the iso-surface to its projected area onto the plane normal to the integration direction,
which measures the increase of the area of the iso-surface owing to turbulent wrinkling.
The term, (ρϕψuψϕ · nϕ)/|nϕ · e1|, is the instantaneous mass flux of the scalar ψ across
the iso-φ surface (per unit area of the plane normal to the integration direction). There-
fore, the integration of the surface mass flow density Rψϕ across the inhomogeneous
layer is the average total flux of the scalar ψ through the iso-surface with φ = ϕ.

In general, the integration in (2.10) should take into account the overall geometry
of the flow such as in axisymmetric and spherically symmetric flows, in order to
conserve overall fluid mass, and hence the need for a weighting factor. The total
scalar mass flux across an inhomogeneous layer can thus be written as

Γψϕ( y, t) =

∫ m2

m1

Rψϕ(x, t)w dm, (2.11)

where m is the coordinate along the integration path. The values m1 and m2

correspond, respectively, to φ̃min and φ̃max, where φ̃min and φ̃max are the minimum

and maximum of φ̃ along the integration line, respectively. φ̃ is the Favre mean of
φ. Integration is performed along the path where the mean scalar evolves to include
contributions from all iso-surfaces distributed over the integration path. It is assumed

in (2.11) that φ̃ is monotonically increasing from φ̃min to φ̃max along the integration
path. The coordinate y represents the location of the integration path, and w is a
non-dimensional weighting factor. The weighting factor is equal to unity for the layers
that are planar in the mean, r/rr for axisymmetric layers and (r/rr )

2 for spherically
symmetric layers, where rr is a suitably defined reference radius. Similarly, the total
mass flux across an inhomogeneous layer can be evaluated as

Γϕ( y, t) =

∫ m2

m1

Rϕ(x, t)w dm. (2.12)

2.3. Non-premixed combustion

Theory of turbulent non-premixed combustion is well advanced (Bilger et al. 2005)
and expressions have been derived for the reaction rate in the limit of fast chemistry.
It should be possible to obtain these results using the present formula (2.7) for the
iso-surface mass flow density in the fast chemistry case of a one-step irreversible
reaction, where reaction occurs at a flame sheet. Such corroboration will support
the validity of the iso-surface mass flow density theoretical results, and the improved
understanding of the physics involved may also result. This is investigated in this
subsection.

For non-premixed combustion, we choose φ as the mixture fraction ξ with a sample
space variable ϕ = η and ψ as a reactive species mass fraction Y . The mixture fraction
ξ and the species mass fraction Y obey

ρ
Dξ

Dt
= ∇ · (ρDξ ∇ξ ), (2.13)

ρ
DY

Dt
= ∇ · (ρDY ∇Y ) + ωY , (2.14)

where Fickian diffusion is assumed with molecular diffusivities, Dξ and DY for ξ and
Y , respectively, and ωY is the chemical reaction rate of Y . Equation (2.7) may then be
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written as

RYη(x, t) = 〈ρY∇ · (ρDξ ∇ξ )|η〉 P (η; x, t) − 〈ρDY ∇Y · ∇ξ |η〉 P (η; x, t). (2.15)

Under fast chemistry conditions (Bilger 1976)

Y = Y e(ξ ), (2.16)

equation (2.15) becomes

RYη = ρηY
e(η)MηP (η) − dY e

dξ

∣∣∣∣
η

ρηNηP (η). (2.17)

Here, Mη is the conditional average diffusion defined as

Mη ≡ 1

ρη

〈∇ ·
(
ρDξ ∇ξ

)
|ξ = η〉. (2.18)

The conditional average density and the conditional average scalar dissipation are,
respectively, defined as

ρη ≡ 〈ρ|ξ = η〉, (2.19)

Nη ≡ 1

ρη

〈ρDξ ∇ξ · ∇ξ |ξ = η〉. (2.20)

The (x, t) dependence of these quantities and of the PDF are omitted to improve
clarity. It has been assumed that Dξ = DY .

If the reaction is one-step and irreversible then the function of (2.16) is piecewise
linear (Bilger 1976) so that we have

dY e

dξ
= H (ξs − ξ )

dY e

dξ

∣∣∣∣
−

+ H (ξ − ξs)
dY e

dξ

∣∣∣∣
+

(2.21)

with the gradients in mixture fraction space, dY e/dξ |− and dY e/dξ |+, being invariant
in their respective domains. There is thus a difference in RYη on either side of the
η = ξs iso-surface, where ξs is the stoichiometric mixture fraction. This difference is

�RYξs
= − ρηNηP (ξs)

[
dY e

dξ

∣∣∣∣
+

− dY e

dξ

∣∣∣∣
−

]
(2.22)

with the conditional average density and scalar dissipation evaluated for η = ξs . This
result can be shown to be equivalent to the average reaction rate per unit volume for
the species Y given earlier (Bilger 1976). To do this we start with the result for the
instantaneous reaction rate, ωY , for the general fast chemistry reaction of (2.16) of
Bilger (1976)

ωY = − ρN
d2Y e

dξ 2
. (2.23)

For the fast irreversible one-step chemistry, (2.21) may be differentiated to yield

d2Y 2

dξ 2
=

[
dY e

dξ

∣∣∣∣
+

− dY e

dξ

∣∣∣∣
−

]
δ(ξ − ξs). (2.24)

Substituting this into (2.23) and taking the ensemble average yields

〈ωY 〉 = −
[
dY e

dξ

∣∣∣∣
+

− dY e

dξ

∣∣∣∣
−

]
〈ρNδ(ξ − ξs)〉 = −

[
dY e

dξ

∣∣∣∣
+

− dY e

dξ

∣∣∣∣
−

]
ρηNηP (ξs). (2.25)
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Comparing (2.22) and (2.25), it is seen that the mean reaction rate is equal to the
difference in the flow rate of the species across the reaction sheet, as is expected.

2.4. Entrainment rate in scalar mixing

The term ‘entrainment’ is used to denote the process that occurs across the interface
between the turbulent and non-turbulent parts of a flow such as for a turbulent
boundary layer or for jets, wakes and other free turbulent flows (Pope 2000). The
concept is concerned with the introduction of vorticity fluctuations into the non-
turbulent fluid. Non-vortical fluctuations can arise in the non-turbulent fluid owing to
the action of pressure fluctuations. Vortical fluctuations can only come, however, from
viscous diffusion from the turbulent part of the flow. It is traditional thinking that the
rate of this entrainment is an absolute quantity that is not dependent on a threshold
for the intensity of the vorticity fluctuations chosen to demarcate what is turbulent
and what is non-turbulent fluid. In flows of this type, that involve a difference
in the temperature or concentration of a fluid species between the turbulent and
non-turbulent parts of the fluid, transfer of the scalar quantity across the interface
between the turbulent and non-turbulent fluid can occur only by molecular conduction
or diffusion. Contamination of the non-turbulent fluid by the scalar difference present
in the turbulent fluid occurs by a process that is exactly analogous to that for vorticity
fluctuations, certainly for cases where the Prandtl number or Schmidt number are
close to unity. This similarity between scalar transport and vorticity fluctuation
transport across the interface has led to the use of a scalar to define the boundary
between the turbulent and non-turbulent fluid and to provide a measure of turbulence
intermittency and its average, termed the intermittency factor (Pope 2000). In terms
of the scalar, the entrainment rate can be defined as the total flux of uncontaminated
fluid across an iso-surface having a small (threshold) value of the scalar. In traditional
thinking, the entrainment rate should be independent of the threshold value chosen if
it is small enough. Here we investigate such use of a scalar to evaluate the entrainment
rate.

Equation (2.8) gives the average mass flow rate of the scalar per unit volume
through the iso-surface with φ = ψ . The average mass flow rate of the remaining fluid
per unit volume through the iso-surface with φ = ψ is thus given by

Rrϕ = Rϕ − Rφϕ

= (1 − ϕ)Rϕ + 〈ρDφ∇φ · ∇φ|φ = ϕ〉P (ϕ). (2.26)

With φ = ξ , (2.26) may be written

Rrη(x, t) = (1 − η)ρηMη(x, t)P (η) + ρηNηP (η). (2.27)

The total mass flux of (1 − ξ ) through the iso-ξ surfaces is given by

Γrη( y, t) =

∫ m2

m1

[(1 − η)Mη(x, t) + Nη]ρηP (η)w dm. (2.28)

This is the required entrainment rate per unit area of an appropriately chosen mean
position of the interface. In (2.28), η is the effective threshold chosen for the scalar. It
can be noted that ρη is expected not to vary across the layer for low Mach numbers,
except perhaps from the effects of differential diffusion. The mean surface density for
the iso-surface with ξ = η can be obtained by ensemble averaging the fine-grained
surface denisty in scalar form:

Ση = Ση · n = 〈|∇ξ ||ξ = η〉P (η). (2.29)
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The wrinkled surface area ratio is given by

Aη( y, t) =

∫ m2

m1

Σηw dm =

∫ m2

m1

〈|∇ξ ||ξ = η〉P (η)w dm. (2.30)

In turbulent jets and mixing layers, the quantity of interest is how much fluid is
entrained in a unit distance of the main flow direction. The integration direction is
then chosen to be perpendicular to the main flow direction. In the axisymmetric jet,
for example, Γrη is evaluated by integration of Rrη along a radial direction, r , with
the weighting factor of r/rr . The entrainment is then measured by Γrη for ξ values
that are low compared to the mean mixture fraction on the centreline.

2.5. Turbulent burning velocity in premixed combustion

The definition of turbulent burning velocity in flows of complex geometry is a
challenging problem in premixed combustion. In a Bunsen burner premixed turbulent
flame and a V-shaped flame, the flame brush grows in width in the downstream
direction. Because of the advective-time-developing nature of the flames, the mass
flux normal to a mean flame surface, which is defined as an iso-surface of a mean
scalar, can depend on the choice of the mean flame surface (Cheng & Ng 1984;
Cheng & Shepherd 1991). In stagnating and counterflow flames with significant mean
flow divergence, the mass flux normal to a mean planar leading edge does not give
a meaningful value of turbulent flame speed because the incoming unburned mixture
can leave without burning (Shepherd & Kostiuk 1994). The mass flux normal to a
mean flame surface decreases from the unburned to the burned sides of the flame
brush.

The reaction progress variable C in reaction front propagation is defined so as to
obey the equation

ρ
DC

Dt
= ∇ · (ρDC∇C) + ρωC, (2.31)

where ωC is the reaction rate per unit mass and DC is the molecular diffusivity for
the progress variable. With φ = C, we obtain

Rζ (x, t) = (ρζMζ + 〈ρωC |ζ 〉)P (ζ ), (2.32)

where ζ is the sample space variable for C. The conditional average density and the
conditional average diffusion are defined, respectively, as

ρζ ≡ 〈ρ|ζ = C〉, (2.33)

Mζ ≡ 1

ρζ

〈∇ · (ρDC∇C)|ζ 〉. (2.34)

In premixed combustion, the surface mass flow density Rζ measures the local
consumption rate of fresh mixture through an iso-scalar surface. Note the contribution
of the conditional diffusion term Mζ . Equation (2.32) shows that the apparent burning
rate, i.e. consumption rate of fresh mixture can depend on the value of ζ chosen.
Integration of Rζ across the flame brush gives the total mass flux through the iso-C
surfaces:

Γζ ( y, t) =

∫ m2

m1

(ρζMζ + 〈ρωC |ζ 〉)P (ζ )w dm. (2.35)

A turbulent burning velocity can be defined as

ST (ζ, y, t) =
Γζ ( y, t)

ρu

, (2.36)
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where ρu is the unburnt density. The wrinkled surface ratio is given by

AT (ζ, y, t) =

∫ m2

m1

Σζw dm =

∫ m2

m1

〈|∇C||C = ζ 〉P (ζ )w dm. (2.37)

In statistically one-dimensional planar turbulent premixed flames, the integration
path is the direction normal to the mean flame brush, and the weighting factor w is
unity. In spherically expanding flames, the integration is performed along the radial
direction with the weighting factor of (r/rr )

2. The turbulent flame speed ST depends
on the time t and the progress variable ζ in these flames. In flames of premixture
round jets impinging and being stabilized on a flat plate, the integration can be
performed along the normal to the flat plate. The turbulent flame speed ST depends
on the radial coordinate r and the progress variable ζ . In Bunsen burner flames and
V-shaped flames, the surface mass flow density can be integrated along the normal to
the mean contours of the reaction progress variable. In that case, the weighting factor
can be evaluated from the mean-contour-based coordinate transform (Gouldin 1996).

In turbulent premixed flames, as an alternative to the progress variable, iso-surfaces
of the density can be used to identify the flame fronts in the low-Mach-number limit.
From the continuity equation we have

Dρ

Dt
= − ρ∇ · U . (2.38)

This yields

Rκ (x, t) = −〈ρ2∇ · U |κ〉Pρ(κ) = −〈∇ · U |κ〉κ2Pρ(κ), (2.39)

Rν = −Rκ = 〈∇ · U |ν〉Pv(ν), (2.40)

where κ is the sample space variable for ρ and v =1/ρ is the specific volume with
sample space variable ν. Note that Rκ values will be negative for flows with positive
dilatation, because positive values imply flow across the iso-surface in the direction of
increasing ρ. It can be seen that for a premixed turbulent flame, the surface mass flow
density is directly proportional to the conditional average dilatation. For uniform
density propagating reaction fronts, the dilatation is zero but the PDF is a delta
function. The conditional average dilatation has been shown to be important in the
structure of turbulent premixed flames (Swaminathan et al. 1997). The total mass flux
through the iso-v surface is given by

Γν( y, t) =

∫ m2

m1

〈∇ · U |κ〉Pv(ν)w dm. (2.41)

A turbulent burning velocity can be defined as in (2.36). This formulation can be
more useful in some circumstances. For example, in experiments, it requires the
measurements of the velocity and the density (temperature), whereas (2.36) requires
the reaction rate, which can depend on all the species involved, as well as the
temperature and the diffusivity. Equation (2.41) also implies a relationship between
〈∇ · U |κ〉 and the diffusional and reactive terms at the kernel of the integral in (2.36).

3. Direct numerical simulations
Direct numerical simulations are carried out to demonstrate the usefulness of the

proposed concepts in understanding iso-surface propagation in turbulent flows. The
simulations are here confined to planar flows.
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The fully compressible Navier–Stokes equations are solved:

∂ρ

∂t
+

∂ρuj

∂xj

= 0, (3.1)

∂ρui

∂t
+

∂

∂xj

(ρuiuj ) = − ∂p

∂xi

+
∂τij

∂xj

+ ρfi, (3.2)

∂ρe

∂t
+

∂

∂xj

[(ρe + p)uj ] =
∂ukτjk

∂xj

+
∂

∂xi

(
λ
∂T

∂xi

)
+ ρQωφ + ρfjuj , (3.3)

∂ρφ

∂t
+

∂

∂xj

(ρujφ) =
∂

∂xj

(
ρD

∂φ

∂xj

)
+ ρωφ, (3.4)

where

ρe =
1

2
ρujuj +

p

γ − 1
, (3.5)

τij =µ

(
∂ui

∂xj

+
∂uj

∂xi

− 2
3
δij

∂uk

∂xk

)
, (3.6)

p is pressure, e is the total internal energy (internal energy plus kinetic energy), ωφ is
the chemical reaction rate of the scalar φ, Q is a heat release parameter, and fi is an
external forcing term. The thermal conductivity λ and the diffusion coefficient D are
given as

λ=µcp/Pr, D =µ/(ρSc), (3.7)

where cp is the specific heat at constant pressure. The dynamic viscosity µ is given as

µ = µu(T/Tu)
n, (3.8)

where n= 0.7. The Prandtl number, Pr, and the Schmidt number, Sc, are set to 0.7. The
gas mixture is assumed to be a perfect gas with a specific heat ratio of γ = 1.4. The
Mach number based on the root mean square (r.m.s.) velocity fluctuations is below 0.1
for all the cases studied here. The equations are integrated using a low storage fourth-
order Runge–Kutta method with a sixth-order compact finite-difference scheme for
spatial discretization (Kennedy, Carpenter & Lewis 2000; Lele 1992).

3.1. Conserved scalar mixing

Passive conserved scalar mixing in forced homogeneous isotropic turbulence is
simulated: ωφ =0. Linear forcing of Lundgren (Lundgren 2003; Rosales & Meneveau
2005) is used:

fi = Af ui, (3.9)

where the forcing constant, Af , is set to be 0.3 here. The Reynolds number based on
Taylor microscale is 56. The passive conserved scalar field is periodic in the x2 and x3

directions, while the Dirichlet condition is used for the x1 direction. The initial scalar
profile is given by

ξ =0.5 [1 + erf(0.5(x1 − x10)/∆0)] , (3.10)

where x10 is an origin for the x1 coordinate and located at the centre of the domain.
∆0 is set to be 0.01L, where L is the characteristic length of the domain. Computation
was continued until the boundary condition in the x1-direction begins to influence
the solution. The equations are solved on 256 × 128 × 128 grid points.
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u′/sL l/ lF Da Ka Reλ

PF1 13.8 3.9 0.28 14 95
PF2 19.5 2.75 0.14 28 95

Table 1. Characteristics of the simulated premixed flames (u′: r.m.s. initial turbulent velocity,
l: initial integral length scale, SL: laminar flame speed, lF : flame thickness based on the
maximum temperature gradient, Da = SLl/(u′lF ), Ka = D2

u/(SLlK )2, lK : Kolmogorov length
scale, Du: unburned mixture diffusivity, Reλ: Reynolds number based on the Taylor scale).

3.2. Isothermal reaction fronts

Reaction front propagation in homogeneous turbulence is simulated. The turbulence
field is the same as that of the conserved scalar mixing case. The reaction rate is
given by

ωc = A(1 − C) exp

(
− β

αC

)
, (3.11)

where A is a pre-exponential factor. C is the reaction progress variable, α = 5 and
β = 4. The front is isothermal in the sense that Q = 0. The underlying flow field is
the same as that for passive conserved scalar mixing. The whole flow and scalar
fields are shifted after a few time steps to maintain the fronts in the centre of
the computational domain. The scalar field is initialized using the laminar front
solution with the front propagation speed SL and the characteristic thickness lF . The
Damköhler number based on u′/SL = 17.67 and l/ lF =3.3 is 0.19, where u′ and l are
integral turbulence velocity and length scales, respectively.

3.3. Premixed flames

The simulated flames are statistically one-dimensional premixed flames propagating
in decaying homogeneous turbulence. The reaction rate is given by

ωYR
=AYR exp

(
−Ta

T

)
, (3.12)

where YR is the mass fraction of the deficient species in the reactant. The activation
temperature Ta is set to be 4Tb, where Tb is the burned gas temperature. The heat
release parameter Q is chosen such that the density ratio between unburned and
burned gas, γ , is equal to 6. The reaction progress variable is defined here as C = 1−YR .

A non-reflecting boundary condition is used for the x1-direction, while the x2,
and x3, directions are periodic (Poinsot & Lele 1992). Although the non-reflecting
boundary condition of Poinsot & Lele (1992) does not consider the chemical reactions
at the boundaries, the flame fronts do not touch the non-reflecting boundaries in the
present simulations. The equations are solved on 512 × 256 × 256 grid points. Initial
turbulence is homogeneous and isotropic. The characteristics of the premixed flames
are shown in table 1. The initial turbulence intensity u′/sL is larger than 10, while the
length scale ratio l/ lF is about 3–4. The laminar flame thickness lF is based on the
maximum temperature gradient. The initial Damköhler numbers for cases PF1 and
PF2 are 0.14 and 0.28, respectively. The velocity- and length-scale ratios are in the
range of those in the previous studies (Trouve & Poinsot 1994; Kortschik, Plessing &
Peters 2004; Chakraborty & Cant 2005; Thévenin 2005). Here the low Da regime
where small-scale turbulence can disturb the flame fronts is of primary interest. The
characteristics of iso-surfaces in this regime are not well understood as compared
with those in the high Da flamelet regime.
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Figure 3. Entrainment rate, Γrη , in the scalar mixing layer as a function of the threshold η
(solid line) at τ = 3.21. Also shown are the total mass flow, Γη , through the η iso-surfaces
(dashed line) and the flow, Γξη , of the mixture fraction ξ (dashed dotted line).

4. Results and discussion
In the present DNS database, the integration direction and the weight factor are

m = x1 and w = 1, respectively. The line integrated quantities, Γψϕ and Γϕ for scalar
fluxes and area ratio Aϕ , have no dependence on the transverse spatial coordinates.

In this section, only a small selection of the possible range of statistically planar
and one-dimensional flows are investigated. They have been chosen to illustrate the
effects of time-dependence in scalar mixing, of considering reactive scalars rather than
conserved scalars, and of the effect of heat release affecting both density and viscosity
change. A more comprehensive investigation could include: the question of spatially
varying but stationary conserved scalar mixing rather than the time-dependent case
considered here; the effects of the form of the chemical kinetics used in the reacting
flows; the influence of a wider range of Da in the reacting flows; separate treatment
of the effects of heat release on density and viscosity change; and consideration of a
range of heat release parameters. Such a broad investigation is required in order to
gain a full understanding of the various factors that influence scalar mixing. This is
beyond the scope of the present work. Rather, we show that the new iso-surface mass
flow density formulation is a powerful tool that enables us to examine long-standing
questions of the relative roles of iso-surface wrinkling and of iso-surface propagation
speed in a series of closely related flows.

4.1. Conserved scalar mixing

For the time-developing planar mixing layer, figure 3 shows the entrainment rate Γrη

as a function of the threshold η at τ ( = t l/u′) = 3.21. Also shown are the total scalar
mass flux Γξη, and the total mass flux Γη through the iso-ξ surfaces. The negative
of Γξη is the entrainment rate of the scalar ξ . The entrainment rates, Γrη and −Γξη,
approach to Γη as η trends to the extreme values of the scalar. This indicates that the
entrainment rate can be estimated with the total mass flux through the iso-ξ surface.
The entrainment rate Γrη shows sensitivity to the threshold value in figure 3, whereas
the overall surface wrinkle ratio Aη does not show dependence on the scalar chosen
in figure 4. The entrainment rate per unit area of the instantaneous iso-surface is,
therefore, sensitive to the threshold value. This suggests that the entrainment rate is
not a well-defined quantity in temporal mixing layers.
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Figure 4. Wrinkled area ratio of the iso-η surfaces for conserved scalar mixing (squares,
τ = 0.21; triangles, τ = 0.54; gradients, τ = 1.07; diamonds, τ =2.14; circles, τ = 3.21).
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Figure 5. Time evolution of entrainment rates through the iso-η surfaces (solid line, Γrη0
;

dashed line, −Γξη1
; η0 = 0.03 and η1 = 0.97).

In temporally growing self-similar scalar mixing layers, local diffusion layers are
continuously growing. While the self-similarity is usually concerned with ensemble
averages, it is expected that the norm of the scalar gradient averaged over the whole
flow field with the condition that ξ = η, 〈|∇ξ ||η〉∗, also shows the self-similarity in
the scalar mixing layers. In constant density flows, the mass in the infinitesimal
volume δVη enclosed by the iso-surfaces with η and η + δη can be estimated as
Aηδη/〈|∇ξ ||η〉∗. Because the overall wrinkled surface ratio Aη is almost independent
of η, the ratio of the fluid mass can be estimated as that of the conditional
average scalar gradient 〈|∇ξ ||η〉∗. Under these conditions, the ratio of fluid mass
contained between η − δη < ξ <η and that between η < ξ < η + δη is time invariant.
Therefore, the entrainment rate in the temporally growing mixing layers, which can
be approximated by the total mass flux Γη for a small threshold value, increases as
the threshold value η decreases. The sharp increase of the entrainment rate near the
extremal values of the scalar may also have some implications for choosing the scalar
threshold in the measurement of intermittency factor (Bilger et al. 1976).

Figure 5 shows the time evolution of entrainment rates, Γrη0
and −Γξη1

, where
η0 = 0.03 and η1 = 0.97. During the initial development, τ < 1, Γrη0

increases with
time. The entrainment rate Γrη0

then shows a weak dependence on time for τ > 1. In
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Figure 6. Surface mass flow density Rη at different locations in the scalar mixing layer (dashed

line, ξ ≈ 0.1; solid line, ξ ≈ 0.5; dashed dotted line, ξ ≈ 0.9; normalized by ρu/l; τ = 2.14).

stationary homogeneous turbulence, the solution of the mean conserved scalar ξ can
be written for τ > 1 as

ξ =0.5
[
1 + erf

{
0.5(x1 − x10)/(Dtt)

1/2
}]

, (4.1)

where Dt is the turbulent diffusivity. This may be written as

x1(ξ, t) = x10 + 2erf−1(2ξ − 1)(Dtt)
1/2. (4.2)

The displacement speed of the iso-ξ surface is then given by

Vξ =
∂x1

∂t
=erf−1(2ξ − 1)

(
Dt

t

)1/2

= erf−1(2ξ − 1)u′
(cD

τ

)1/2

. (4.3)

Here, cD ≡ Dt/(u
′l). The entrainment rate through the iso-ξ surface is then given by

Sξ = (1 − ξ )Vξ − Dt

∂(1 − ξ )

∂x1

=

[
(1 − ξ )erf−1(2ξ − 1) − 1√

π
exp

{
(x1 − x10)

2

4Dtt

}]
u′

(cD

τ

)1/2

. (4.4)

The entrainment rate through the iso-ξ surface thus scales with τ−1/2 for stationary
homogeneous turbulence. The entrainment rate can be decomposed into the
contribution from the increase of the wrinkled surface area ratio and that from
the entrainment velocity. Initial increase of the entrainment rate in figure 5 is due
primarily to the increase of the wrinkled surface area. The difference between the time
dependence in figure 5 and that in (4.4) appears to arise from the fact that η0 = 0.03
and η1 = 0.97 are in the regions shown in figure 3 to be where the entrainment
rate is very sensitive to η. It is likely that these are within the ‘viscous superlayer’
(Pope 2000). It seems that scaling with the turbulent diffusivity is not valid in the
superlayer. It is apparent that this behaviour in the superlayer is worthy of further
detailed investigation: this is beyond the scope of the present work.

Figure 6 shows the surface mass flow density Rη at different locations in the scalar
mixing layer at τ = 2.14. At the location with ξ ≈ 0.1, Rη is significant only for low
values of η, η < 0.2, while it is slightly lower than zero for η > 0.4. At the opposite side
of the layer, Rη is negative at high values of the scalar, η ≈ 1. In general, Rη changes
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(a)

(b)

Figure 7. Instantaneous C-fields for isothermal reaction fronts at (a) τ = 3.2 and (b) τ =7.5.

a sign at a scalar value which increases with the mean of the scalar. In the following
subsection, it is shown that a similar behaviour of Rη is observed in reaction front
propagation in a low Da regime.

4.2. Isothermal reaction fronts

Figures 7 (a) and 7 (b) show instantaneous fields of the progress variable, C, at τ = 3.2
and τ =7.5, respectively. At τ = 3.2, the thickness of fronts has a range of length
scales. The relatively thin fronts have a smaller thickness than laminar fronts. The
average thickness of the fronts is approximately equal to that of the laminar front at
τ = 3.2. At later time of τ =7.5, the fronts are much more thickened by small-scale
turbulence. The mean progress variable at the inflow boundary is about 10−3 for
τ > 6.

Figure 8 shows the turbulent burning velocity, (2.36), defined for various iso-C
surfaces at several time instants. Note that the turbulent burning velocity ST is
negative at high values of ζ at the early stage of τ = 1.7. It then increases for all
ranges of ζ until τ = 4.28. The iso-surfaces for lower values of ζ propagate faster
than those for higher values of ζ at τ < 4.28. This implies that the reaction fronts are
being thickened on average. In the stationary propagation stage, τ > 6, ST should be
equal for all values of ζ , although the numerical results show some fluctuations. The
thickness of the reaction front brush in the stationary propagation stage is L/lF ≈ 29,
where L is the length of the domain with 0.05 <C < 0.95. C is the mean progress
variable.

Figure 9 shows the average propagation speed of the iso-C surfaces relative to
that for an unstretched laminar flame, ST /(AT SL). At τ = 1.07, the average local
propagation speed is much greater than the laminar value SL for small values of ζ ,
whereas it is small and even negative for large values of ζ . During the transient stage
of 2 <τ < 5, the front propagation speed is close to the laminar one in the reaction
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Figure 8. Turbulent burning velocity for isothermal reaction fronts (squares, τ =1.07;
diamonds, τ = 2.14; circles, τ = 4.28; triangles, τ = 6.43; right triangles, τ = 7.5; left triangles,
τ = 8.57; solid lines denote the stationary state; dashed lines denote the transient state).
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Figure 9. Average local propagation speed of the iso-C surfaces for isothermal reaction
fronts (values as for figure 8).

zone. Iso-C surfaces for the pre-reaction zone propagate faster, whereas those for the
post-reaction zone propagate more slowly than the laminar one during this period.
In the stationary propagation stage, the propagation speed of iso-C surfaces is close
to the laminar one for all values of ζ .

In the classical result of Damköhler (1940), the turbulent flame speed in the
distributed reaction zone regime is given by ST /SL ∼ (Dt/D)1/2. An open question for
this scaling law is whether the enhanced speed is due primarily to increased surface
area or whether increased local propagation speed can also be significant. Bilger
(2004) investigated the characteristics of the marker variable, which is introduced
to mark the flame fronts, and found that the increase of the iso-surface area of the
marker variable follows (Dt/D)1/2 scaling. In this analysis, the stationary homogeneous
field with uniform mean scalar gradient is assumed. Another key assumption is the
Gaussian PDF of the scalar, for which the intermittency effects are not included. These
assumptions are also relevant to the progress variable field in the distributed reaction
zone regime. This suggests that Aζ ∼ (Dt/D)1/2 and that the average propagation
speed of the iso-surface is of the order of the laminar front propagation speed as in
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Figure 10. Surface mass flow density and surface density function for isothermal reaction
fronts (filled symbols, Rζ /(ρSL); empty symbols, Σζ ; squares, C ≈ 0.05; triangles, C ≈ 0.3;
diamonds, C ≈ 0.7; circles, C ≈ 0.95; τ = 7.5).
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Figure 11. Conditional diffusion across the layer of isothermal reaction fronts
(squares, C ≈ 0.05; triangles, C ≈ 0.3; circles, C ≈ 0.7; diamonds, C ≈ 0.95; τ = 7.5).

figure 9. The question still remains about the effects of intermittency and finite Da,
however.

Figure 10 shows the surface mass flow density Rζ and the surface density function
Σζ at τ ≈ 7.5. Local propagation characteristics are significantly different from those

in the wrinkled laminar front propagation regime. In the location with C not being
very close to 0 or 1, the local propagation velocity is higher than that of the laminar
front for ζ < ζ0, whereas it is lower than that of the laminar front for ζ > ζ0. The
value of ζ0 increases with C, which is similar to the behaviour observed in conserved
scalar mixing in figure 6. At the trailing edge, iso-C surfaces propagate much faster
than unstretched planar laminar fronts for the whole range of ζ . While the average
propagation speed is close to the propagation speed of the laminar front, the local
propagation property is significantly affected by turbulence in the low Da reaction
fronts propagation.

The observed propagation characteristics of iso-scalar surfaces are related to the
variation of the conditional diffusion Mζ across the layer. In figure 11 the conditional
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diffusion increases with increasing mean scalar. In the scalar field with the Gaussian
PDF, the conditional diffusion is linear in the scalar space being zero at the value of
the mean scalar (Pope & Ching 1993):

Mϕ ∼ 1

τφ

(φ − ϕ), (4.5)

where τφ is the mixing time scale of the scalar φ. In scalar mixing layers and low Da
reaction front propagation, the PDF is close to the Gaussian distribution except for
the tails of the PDF and the boundaries of scalar space. The relationship of the PDF
and the conditional diffusion for a general case (Pope & Ching 1993; Ching 1996)
suggests that the linear relationship for the Gaussian PDF in (4.5) is a good first-order
approximation of the conditional diffusion for this kind of PDF. The increase of the
conditional diffusion with increasing mean scalar was also observed in simulations of
spatially developing scalar mixing layers (de Bruyn Kops & Mortensen 2005).

The relation (4.5) and the results in figure 11 imply that the conditional diffusion
in low Da turbulent reaction fronts is significantly different from that in laminar
ones and primarily determined by the characteristics of the turbulent mixing field.
According to (2.32), the mass flux through the iso-surfaces is governed by the balance
of the conditional diffusion and the reaction rates. Since the conditional reaction rates
are not affected by turbulence in the present case, the effects of turbulence on the
propagation characteristics of iso-scalar surfaces are represented by the conditional
diffusion. Negative burning velocity or propagation speed can occur for iso-surfaces
with C >C when turbulent mixing is much stronger than chemical reactions. In
the middle of the reaction front brush with low Da, the qualitative behaviour of
the iso-surface propagation is explained well by the above argument based on the
conditional diffusion for the scalar field where the PDF near the mean scalar is
close to the Gaussian distribution. At the leading and trailing edges where the PDF
is far from the Gaussian distribution, the propagation characteristics are different
from those in the middle of the layer. At the trailing edge, iso-C surfaces propagate
faster than unstretched planar laminar fronts for the whole range of ζ , while at the
leading edge, iso-C surfaces propagate more slowly than unstretched planar laminar
fronts for the whole range of ζ . These propagation characteritics at the leading and
trailing edges are necessary to obtain statistically stationary propagation for which the
turbulent burning velocity does not depend on ζ . It is expected that these behaviours
are the characteristics of reaction front propagation in the low Da regime.

4.3. Premixed flames

Figure 12 shows the time evolution of the total burning rate, i.e. the integration of
the mean reaction rate across the layer, normalized by ρuSL. While the total burning
rate is continuously growing, the growth rate decreases after τ ≈ 2, especially for PF2.
The continuously growing total burning rate during the simulation of several eddy
turnover times has been commonly observed in DNS of freely propagating premixed
flames (Veynante & Poinsot 1997; Chakraborty & Cant 2005). The present simulation
time is similar to or longer than the previous studies. Iso-C surfaces for the higher
Da case PF1 and the lower Da case PF2 at τ ≈ 4 are shown in figures 13(a) and 13(b),
respectively.

Figure 14 shows the surface mass flow density Rζ and the surface density function
Σζ for the cases PF1 and PF2. The surface density Σζ shows finite Da effects: it
rapidly decreases with ζ near the leading edge, whereas it increases with ζ near
the trailing edge. In the middle of the flame brush where most burning occurs, this
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Figure 12. Time evolution of the total burning rate (solid line, PF1; dashed line, PF2;
normalized by ρuSL).
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Figure 13. Iso-C surfaces for C = 0.2 and C = 0.8 in the premixed flames at τ ≈ 4
(x1 = 0, unburned side; x1 = 2, burned side). (a) PF1. (b) PF2.

dependence becomes weaker. For the iso-surface propagation speed, the departure
from the laminar flamelet behaviour is weak as compared with that in the isothermal
reaction fronts. This is probably due to the decay of the turbulence, the effects of
increased viscosity in high temperature gas, and the dilatation in the reaction zone.

The surface density weighted average propagation speed, Rζ/(ρuΣζ ), of iso-
C surfaces is compared with the conditional average of the displacement speed,
〈ρuC |ζ 〉/ρu, in figure 15. Although the two quantities are similar to each other,
differences are observed at the leading and trailing edges. The difference between the
two quantities comes from the correlation of the mass flux through the iso-surface
and the fine grained surface density, 〈ρu′

CΣ ′
ζ |ζ 〉. At the leading edge, this correlation

is positive for C < 0.4.
While figure 14 gives point-wise statistics, in figure 16, we show similar information

integrated across the layer: the turbulent burning velocity defined for various iso-C
surfaces, ST , and the total wrinkled area, AT . The turbulent burning velocity ST

and the total wrinkled area AT show a dependence on ζ . For PF1, the turbulent
burning rate normalized by the laminar one, ST /SL, is larger than AT for ζ < 0.5,
which indicates that iso-C surfaces for low values of ζ propagate faster than the
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Figure 14. Surface mass flow density and surface density function for the premixed flames
(filled symbols, Rζ /(ρuSL); open symbols, Σζ ; squares, C̃ = 0.03; triangles, C̃ = 0.4; circles,

C̃ = 0.9; τ ≈ 4). (a, b) PF1. (c, d) PF2.
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Figure 15. Comparison of the surface density weighted propagation speed, Rζ /(ρuSLΣζ ),
(symbols) and the conditional average of the displacement speed, 〈ρuC |ζ 〉/(ρuSL), (lines) at
τ ≈ 4 (squares, C̃ =0.03; triangles, C̃ =0.4; circles, C̃ = 0.9). (a) PF1. (b) PF2.
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Figure 16. Turbulent burning velocity and wrinkled surface area ratio for the premixed
flames at τ ≈ 4. (a) PF1. (b) PF2.
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Figure 17. Conditional diffusion (circles, laminar value; squares, C̃ = 0.03; triangles, C̃ =0.4;
diamonds, C̃ = 0.9; normalized by lF /SL; τ ≈ 4). (a) PF1. (b) PF2.

laminar flame on average. However, the propagation characteristics generally follow
the wrinkled laminar flame propagation. For PF2, ST /SL is higher than AT for ζ < 0.1,
whereas it is lower than AT for ζ > 0.1. The time required to achieve a steady state
increases as Da decreases. In figure 16, wrinkling of the iso-surfaces is highest for low
values of ζ and significantly lower for high values of ζ , particularly for the lower
Da case PF2. This supports the concept of the ‘thin reaction zone’ regime of flame
structure where the turbulence increases wrinkling in the preheat zone. Wrinkling is
also decreased in the burnout zone of the front, perhaps owing to the effect of high
viscosity dampening the turbulence.

For turbulent premixed flames that are in the wrinkled laminar flamelet regime, the
structure of the local flame front is close to that in an unstretched planar laminar
flame. For significant amounts of wrinkling, the radius of curvature of the flame front
can become of the same order as the thickness of the instantaneous flame front. For
the current chemistry with Lewis numbers unity, these effects must come from the con-
ditional diffusion Mζ , (figure 17). The dependence of Mζ on the locations of the flame
brush in figure 17 is primarily due to these curvature effects and is also consistent with



Iso-surface mass flow density 403

x1
* x1

*

F
av

re
 m

ea
n 

pr
og

re
ss

 v
ar

ia
bl

e

T
ur

bu
le

nt
 s

ca
la

r 
fl

ux

–5 0 5
0

0.2

0.4

0.6

0.8

1.0
(a) (b)

0

0.2

0.4

0.6

0.8

1.0

–0.02

0

0.02

0.04

0.06

F
av

re
 m

ea
n 

pr
og

re
ss

 v
ar

ia
bl

e

T
ur

bu
le

nt
 s

ca
la

r 
fl

ux

–5 0 5
–0.08

–0.06

–0.04

–0.02

0

0.02

Figure 18. Distributions of the Favre mean and turbulent flux of the progress variable (solid
line, turbulent scalar flux normalized by u′; dashed line, the Favre mean progress variable;
x∗

1 = (x1 − x0)/l where x0 represents the centre of the flame brush; τ ≈ 4). (a) PF1. (b) PF2.
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Figure 19. Conditional dilatation (circles, laminar value; squares, C̃ = 0.03; triangles,

C̃ = 0.4; diamonds, C̃ = 0.9; normalized by lF /SL; τ ≈ 4). (a) PF1. (b) PF2.

the previous observation for the isothermal reaction fronts with low Da. For the low
Da case, PF2, turbulent premixed flames have more significant effects of small-scale
turbulence on the structure of the instantaneous flame front near the leading edge.
The form and values of Mζ are influenced by small-scale turbulence in figure 17(b), but
not as significantly as in the isothermal reaction front problem. The turbulent burning
velocity can depend on the choice of ζ in these cases. The effects of the curvature
and the small-scale turbulence are more evident near the leading and trailing edges.

Figure 18 shows the distributions of the Favre mean progress variable C̃ and the

turbulent scalar flux c̃′′u′′
1 for the cases PF1 and PF2, where the double prime denotes

fluctuations about the Favre mean. For the higher Da case PF1, turbulent scalar
fluxes are in the counter-gradient direction in the middle of the flame brush, whereas
they are in the gradient direction at the leading and trailing edges. As Da decreases,
countergradient diffusion is not observed for the whole region of the flame brush in
figure 18(b).

Figure 19 shows the conditional dilatation for the cases PF1 and PF2. The
conditional dilatation varies from the unburnt to the burnt side. The shape of the
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conditional dilation is significantly different from that of the unstretched laminar flame
at the leading edge for the lower Da case PF2. Although not shown, for the location

where C̃ < 0.02, the peak moves to the unburnt side of the local flame fronts, which
is favourable to transition to the gradient transport of the scalar flux (Swaminathan
et al. 1997).

In statistically one-dimensional steady premixed flames, turbulent scalar fluxes have
a close relationship with the local flame structure (Swaminathan et al. 1997). Using
the concept of the surface mass flow density, this relation can be written as∫ ∞

−∞
ρ̄ũ′′

1c
′′ dC̃

dx1

dx1 =
ρu

γ − 1

∫ ∞

−∞

∫ 1

0

(ζ − C̃)Rζ dζ dx1

=
ρu

γ − 1

(
1
2
ST −

∫ ∞

−∞
C̃

∫ 1

0

Rζ dζ dx1

)
. (4.6)

This shows the relationship between the local propagation property and the mean
scalar transport. According to the results in figures 10 and 14, variations of the local
propagation speed owing to departure from the unstretched laminar flamelet structure
increase the tendency to gradient diffusion, especially at the leading edge.

While conserved scalar mixing can be considered as the zero Da case, for which the
diffusion layers are continuously broadened for thin enough initial layer thickness,
it does not describe behaviour in the limiting case of Da → 0 and t → ∞. When the
initial planar laminar fronts are subject to strong turbulence, i.e. in low Da limit,
the initial increase of the reactant consumption speed is primarily determined by
turbulent transport. The initial propagation characteristics of the iso-surfaces of the
progress variable is then similar to that of the conserved scalar. During the transient
period, the brush thickness increases, while the scalar gradients in the brush decrease.
A stationary state is reached when the steepening of scalar gradients by chemical
reactions is balanced with mitigation of scalar gradients as a result of turbulent
mixing. In the KPP theory (Kolmogorov, Petrovskii & Piskunov 1937; Lipatnikov &
Chomiak 2005), the diffusion–reaction equation has an asymptotic propagating
solution at t → ∞ with some restrictions on the reaction rate. The KPP result is
for a constant positive (here turbulent) diffusivity. In the present isothermal reaction
fronts with low Da, the turbulent diffusivity is positive throughout the layer, and a
stationary state is reached at large τ in agreement with the KPP theory.

In premixed flames with heat release, there is a question about the turbulent
diffusivity. At high Da, we have countergradient flux and so a negative turbulent
diffusivity. Bray (1991) contended that the flux is the gradient at the unburnt edge of
the flame and so that a stationary flame is found at high Da. On the other hand, Zimont
(1979) claimed that the layer never becomes stationary even at low Da. Assuming that
there exists a regime where turbulent scalar fluxes are in a countergradient direction
for the whole field under the given mean pressure gradient and flow geometry, there
exists a critical Damköhler number DaC1 just below which the change of sign of
the turbulent scalar flux occurs. The DNS data support Bray’s argument that this
sign change begins to occur at the leading edge. The present analysis shows that
this is related to the fact that turbulence more effectively increases the propagation
speed of iso-C surfaces for low values of C at the leading edge. There also should
be the Damköhler number DaC2(< DaC1) below which the turbulent scalar fluxes
are in a gradient direction for the whole field. Based on the KPP theory and the
above discussion, a steady planar premixed flame exists when Da < DaC2. Bray (1991)
contended that the steady planar flame is found even at Da = DaC1 = ∞. While a
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Figure 20. Comparison of (a) turbulent burning velocity and (b) wrinkled surface area ratio
based on the reaction progress variable and those based on the specific volume in PF1
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quantity; circles, τ ≈ 2.2; squares, τ ≈ 4).

stationary state can be reached in low Da flames, the existence of the stationary state
for high Da flames is still an open problem.

Figure 20 (a) compares turbulent burning velocity based on the progress variable
ST (ζ ) and that based on the specific volume ST (ν) at τ ≈ 2.2 and 4 in PF1. ST (ζ ) and
ST (ν) are in good agreement for ζ and ν > 0.1. The difference for very low values of ζ

and ν is due to compressibility effects in finite-Mach-number flows. Wrinkled surface
area ratio based on the progress variable AT (ζ ) also compares well with that based
on the specific volume AT (ν) in figure 20 (b).

4.4. General discussion

For the cases studied here, there appears to be no consistent pattern for the relative
roles of iso-surface wrinkling and iso-surface propagation in scalar mixing. For the
temporal scalar mixing layer, mixing at low values of η comes from increased speed
of iso-surface propagation. For the iso-thermal reaction front studied, a stationary
state is reached in which there is little effect of ζ on the amount of wrinkling or on
the propagation velocity for quantities integrated across the layer: within the layer,
however, the point-wise statistics show behaviour that is much more complex than
expected for a wrinkled laminar propagating front. For the premixed flames studied,
however, the structure is close to that for wrinkled laminar flames, both for point-
wise statistics within the layer and for quantities integrated across the layer. The
lower Da results indicate increased wrinkling in the preheat zone of the instantaneous
flame-front and decreased wrinkling in the reaction completion or burnout zone.

As indicated at the beginning of this section, a more comprehensive series of cases
must be investigated to ascertain the relative effects of temporal development, scalar
reactivity and heat release on the relative roles of iso-surface wrinkling and iso-surface
propagation in scalar mixing.

5. Discussion on turbulent burning velocity
The fine-grained mass flow rate ṁ′′′

C in (2.6) measures the mass flow rate normal to
a iso-C surface for a single measurement. Considering a stationary oblique (planar)
laminar flame, the ensemble average of ṁ′′′

C is the same as a value for the single
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measurement. It can be shown in the laminar flame that the integration of the surface
mass flow density along the flame normal coordinate n yields the mass flux normal
to the flame surface: ∫ ∞

−∞
−ρuC |∇C|δ(C − ζ ) dn= −ρζuζ . (5.1)

This gives the laminar flame speed (−ρζuζ )/ρu. In turbulent flames, these surfaces
fluctuate in the flame brush. The surface mass flow density is a measure of the local
mass flux. Fluctuations of the iso-scalar surface in the flame brush are considered by
integration across the flame brush. In analogy with the laminar flame, integration can
be performed along the normal to the contour of the mean progress variable.

A key feature of the surface mass flow density and the total mass flux across the
inhomogeneous layer proposed here is that they are based on conditional averaging
of the mass flux across an instantaneous iso-surface. Gouldin (1996) suggested a
burning rate integral to measure the intensity of burning in laminar and turbulent
flames. It is a generalization of the method by Shepherd & Kostiuk (1994), which
was devised to consider a divergent flow in the counterflow and impinging flames. A
similar integration to the present approach was adopted, but with the mean reaction
rate as a kernel of the integral. Assuming a steady state, the burning rate integral
was related to quantities from velocity and density fields, as in (2.41). The definition
of turbulent burning velocity in non-stationary developing flames was considered by
Lipatnikov & Chomiak (2002). Their method is based on the propagation of a mean
flame brush or iso-surfaces of the mean scalar. It contains turbulent fluctuation effects
inside the flame brush: for C ≈ 0.5, the burned and unburned mixtures present with
equal probability in high Da flames. The non-stationary effects in their argument
are, therefore, primarily due to growing flame brush by large-scale wrinkling. On the
other hand, in the present definition of turbulent burning velocity, the dependence of
turbulent flame speed on ζ comes from local flame fronts disturbed by turbulence.
The non-stationary effects due to the large-scale wrinkling do not directly influence
the ζ -dependence in the present method.

In general, the turbulent burning velocity ST depends on the value of ζ as well as
on the location of the integration path. If the flame brush is statistically stationary,
planar and one-dimensional, the turbulent burning velocity does not depend on the
value of ζ chosen. This single value of the turbulent burning velocity is the same
as the mean fluid velocity in the cold boundary in that case. During the developing
phase of the one-dimensional flame, ST shows dependence on ζ when the local flame
fronts are disturbed by turbulence. In practical flames and most laboratory flames,
there is divergence in the flow, and the turbulent burning velocity can depend on the
value chosen for ζ . In Bunsen flames and V-shaped flames, the anchoring of these
flames at a particular location is analogous to the initial conditions of the planar
flames studied here. Time development of the layer in the planar case is analogous
to advection downstream in these anchored flames. Usually, there will be insufficient
advective time to reach a steady state so that the flame speed will depend on ζ .

6. Conclusions
A new result has been derived for the mass flow rate per unit volume through

a scalar iso-surface (the iso-surface mass flow density). The expressions of the
entrainment velocity for scalar mixing and turbulent burning velocity for premixed
combustion are obtained by integrating this quantity in the direction of mean scalar
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inhomogeneity. In contrast to the previous ones, the proposed expressions are based
on conditional averaging on an instantaneous iso-scalar surface and consider the
dependence on a value of the scalar chosen. For non-premixed turbulent reacting
flow, it is verified that this new result is consistent with the classical result of Bilger
(1976) for fast one-step irreversible chemical reactions.

Direct numerical simulation data for conserved scalar mixing and reaction front
propagation in stationary homogeneous turbulence and one-dimensional turbulent
premixed flames are analysed using the proposed method. In the conserved scalar
mixing case, the issue of the dependence of the entrainment velocity on a threshold
value of the scalar is addressed. Results show that the entrainment velocity is sensitive
to a threshold value, while the wrinkled surface ratio is almost constant for the
whole range of the scalar value. This suggests that the entrainment velocity is
not a well-defined quantity in temporally developing mixing layers. Furthermore, it
appears that scaling in the viscous superlayers is anomalous and warrants further
investigation.

In the reaction front propagation problems, the effects of small-scale turbulence
and non-stationarity on the turbulent burning velocity are addressed. It is shown in
the isothermal reaction front problem that small-scale turbulence enhances the local
propagation speed for the iso-surfaces with lower values of the reaction progress
variable, whereas it decreases the local propagation speed of the iso-surfaces with
higher values of the reaction progress variable, except for the leading and trailing
edges. The value of the progress variable for which this transition occurs increases
with the mean progress variable. These characteristics of the reaction front with low
Da are observed in point-wise statistics, while the propagation speed integrated over
the inhomogeneous layer is close to an unstretched laminar front value. These obser-
vations are discussed in terms of the characteristics of the conditional diffusion and the
scaling of the turbulent burning velocity and the wrinkled surface ratio in that regime.

In the premixed flames, the propagation characteristics are found to be close to
those of the quasi-laminar flame propagation, perhaps owing to the decay of the
turbulence in the whole flow field, and the effects of high viscosity and dilatation
dampening the turbulence. Wrinkling of the iso-surfaces is highest for low values of
the progress variable and significantly lower for high values of the progress variable,
particularly for the lower Da flame studied here. This supports the concept of the ‘thin
reaction zone’ regime of the flame structure where the turbulence increases wrinkling
in the preheat zone. During the developing phase of the present flames, the turbulent
burning velocity is shown to be higher for lower values of the reaction progress
variable. Increased overall propagation speed at lower values of the progress variable
comes less from iso-surface wrinkling and more from increased propagation of the
instantaneous iso-surface.

In the present method, the non-stationarity effects and the dependence of the
turbulent burning velocity on the value of the progress variable are due to flame
fronts disturbed by turbulence and are not influenced by large-scale wrinkling. Time
development of the layer in the present planar flames is analogous to advection
downstream in anchored flames such as Bunsen flames and V-shaped flames. It is
also shown that the propagation characteristics represented by the surface mass flow
density and the turbulent burning velocity have a close relationship with the turbulent
scalar flux in a statistically stationary one-dimensional premixed flame. Variations of
the local propagation characteristics due to departure from the unstrained laminar
flamelet structure are shown to decrease the tendency to countergradient transport in
turbulent premixed flames.
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